Multiplying Permutations

$$
a=(1,3,5,2)
$$

is a permutation.
What does this mean? It says 1 goes to 3,3 goes to 5,5 goes 2,2 goes to 1 , and 4 and any other number is fixed. So we could write it like this.

$$
\begin{gathered}
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 5 & 4 & 2
\end{array}\right) \\
b=(1,6,3,4)
\end{gathered}
$$

is another permutation.
This says 1 goes to 6,6 goes to 3,3 goes 4,4 goes to 1 , and 2,5 and any other number is fixed. So we could write it like this.

$$
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 2 & 4 & 1 & 5 & 3
\end{array}\right)
$$

Next we look at multiplying these matrices. We will find ab. To do this we will start with the b permutation and then follow with a. (In some books you may see this done in the reverse direction, a first then b . There are different approaches to multiplying permutations here we will describe two of them.

$$
a b=(1,3,5,2)(1,6,3,4)
$$

So we begin with b, 1 goes to 6 where does 6 go to in a, 6 is fixed so 6 goes to 6 so now we know our first entry is 1 goes to 6 .
Next back to b where does 6 go in $\mathrm{b}, 6$ goes to 3 , where does 3 go to in a, 3 goes to 5 , Now we have our next entry 6 goes to 5 .
Next back to b where does 3 go in $\mathrm{b}, 3$ goes to 4 , where does 4 go to in a, 4 is fixed in a therefore 3 goes to 4 , Now we have our next entry 3 goes to 4 .
Next back to b where does 4 go in b, 4 goes to 1 , where does 1 go to in a, 1 goes to 3 , Now we have our next entry 4 goes to 3 .
Next back to b where does 2 go in $\mathrm{b}, 2$ is fixed so 2 goes to 2 , where does 2 go to in a, 2 goes to 1 , Now we have our next entry 2 goes to 1 .
Now for our last entry we go back to b where does 5 go in $\mathrm{b}, 5$ is fixed in b so 5 goes to 5 , where does 5 go to in a, 5 goes to 2 , Now we have our next entry 5 goes to 2 . So our permutation looks like this

$$
\left(\begin{array}{llllll}
1 & 6 & 3 & 4 & 2 & 5 \\
6 & 5 & 4 & 3 & 1 & 2
\end{array}\right)
$$

So our final ab is

$$
a b=(1,6,5,2)(3,4)
$$

Or we could use this method - We write out b as in number 4 above. Then use the second line in b to find where these values go in a and fill these results into a third line. We then cross out the middle line and we have our resultant permutation $\mathrm{ab}=$

$$
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 2 & 4 & 1 & 5 & 3 \\
6 & 1 & 4 & 3 & 2 & 5
\end{array}\right)
$$

So eliminating the middle line we get ab as in 6 and 7 above

$$
a b=(1,6,5,2)(3,4)
$$

Examples to try yourself. In each case find ab
1.

$$
\begin{gathered}
a=(1,5,2,4) \\
b=(2,6,5)(3,4,7)
\end{gathered}
$$

2.

$$
\begin{gathered}
a=(1,2,5,3,4,6) \\
b=(1,5,3,7,4)
\end{gathered}
$$

3.

$$
\begin{aligned}
a & =(1,4,6,3,7)(2,8) \\
b & =(2,5,3)(4,7,8,1)
\end{aligned}
$$

Answers:

1. $(1,5,4,7,3)(2,6)$
2. $(1,3,7,6)(2,5,4)$
3. $(1,6,3,8,4)(2,5,7)$

Note: Often the commas between the elements of the permutation are removed i.e. $(1,5,4,7,3)(2,6)=(15473)(26)$

